方案编号: DF-014-202506

膳食纤维测定仪测定三种抗性麦芽糊精中的总膳食纤维(包括不可沉降性膳食纤维 SDFS)的含量

一、前言

在食品中检测膳食纤维,特别是不可沉降性膳食纤维(SDFS),具有重要的营养学和公共健康意义。随着人们对健康饮食和慢性疾病预防意识的增强,膳食纤维的营养功能愈发受到重视。传统的膳食纤维检测方法主要关注不可溶性膳食纤维(ISDF)和可溶性可沉降性膳食纤维(SDFP),而对于 SDFS 这类低分子、可溶性但仍具膳食纤维生理功能的成分,往往未能有效覆盖,导致对食品总膳食纤维含量的评估存在偏差。

SDFS 主要包括低聚果糖、低聚半乳糖、抗性糊精等成分,这些物质虽然具有较好的可溶性,但它们不被小肠吸收,进入大肠后可被肠道微生物发酵利用,促进有益菌生长,产生短链脂肪酸(如丁酸),从而在调节肠道菌群、改善肠道环境、增强免疫功能、调控血糖和血脂水平等方面发挥积极作用。相较于传统膳食纤维,SDFS 在某些健康功能上的表现甚至更加突出。因此,全面而准确地检测 SDFS,对于科学评价食品的营养价值具有重要意义。

在食品研发领域,准确掌握产品中的 SDFS 含量,有助于企业优化配方,提升产品的功能性与市场竞争力,特别是在开发益生元食品、代餐产品或针对特定人群(如糖尿病患者、肠道敏感人群等)的功能性食品时更为关键。另一方面,从营养标签标识角度出发,越来越多国家和地区的法规要求对"膳食纤维"进行明确定义和全面测定,若未能考虑 SDFS 的贡献,将可能导致标签信息不完整或误导消费者。

然而,SDFS 的检测由于其理化性质特殊,通常需要结合酶解、过滤和高效液相色谱等步骤,操作过程较为复杂、技术要求高,因此也对实验人员的专业能力和实验设备提出更高的要求。随着 AOAC 方法(如 2011.25 和 2022.01)和国标(GB5009.88-2023)的发展和推广,越来越多实验室开始具备进行 SDFS 检测的能力,这也为提升整体膳食纤维检测的准确性和标准化水平提供了保障。

综上所述,食品中 SDFS 的检测不仅对于营养科学研究和食品工业应用具有现实意义,也在公共健康和消费指导层面发挥着不可忽视的作用。加强 SDFS 检测技术的研究和普及,将有助于推动更科学、精准的食品营养评价体系建设。

本方案依照国标《GB 5009.88-2023 食品安全国家标准 食品中膳食纤维的测定》,使用膳食纤维测定仪对三种抗性麦芽糊精进行测定,并使用高效液 相色谱法测定其 SDFS 的含量。

二、仪器

DF06 膳食纤维测定仪, K1160 全自动凯氏定氮仪, K2025 高效液相色谱仪, 马弗炉, 分析天平等

三、实验过程

- 3.1、仪器准备
- 3.1.1、将滤膜编号,于105℃烘箱中烘干至恒重并称重为 M₆后,安装于过滤漏斗中,并安装至仪器相应位置处。
- 3.1.2、移取 350 μ L 的热稳定 α –淀粉酶溶液,溶于盛有 50mL 的顺丁烯二酸缓冲溶液的酶瓶中,然后将酶瓶安装至仪器相应位置处;700 μ L 的 50mg/mL 蛋白酶溶液,溶于盛有 47mL 的顺丁烯二酸缓冲液的酶瓶中,然后将酶瓶安装至仪器相应位置处;移取 700 μ L 的淀粉葡萄糖苷酶溶液,溶于盛有 50mL 的顺丁烯二酸缓冲液的酶瓶中,然后将酶瓶安装至仪器相应位置处。
- 3.1.3、确保 95%乙醇、纯水(三级,下同)、顺丁烯二酸缓冲液、醋酸溶液的对应试剂桶中试剂充足,然 后将其与对应接头连接。
- 3.2、准确称取样品 0.25g (精确至 0.1mg),使用称量纸盛放,注意避免气流吹拂样品导致质量损失。
- 3.3、HMWDF((高分子量膳食纤维,即不可溶性膳食纤维 ISDF 与可溶性可沉降性膳食纤维 SDFP 之和))的测定
- 3.3.1、设定酶解程序如下:

热稳定α-淀粉酶反应时间/min	40	95%乙醇沉淀用量/mL	260
淀粉葡萄糖苷酶反应时间/min	30	 沉淀时间/min	60
蛋白酶反应时间/min	30	 78%乙醇洗涤用量/mL	15
乙酸加液量/mL	2	 95%乙醇洗涤用量/mL	15
抽滤方式		抽滤时间/min	10

- 3.3.2、在运行-第一法中选定设定酶解程序,开始运行,并按照步骤将酶解袋安装至仪器对应位置处,然后按照步骤提示将样品倒入酶解袋中。(注意避免样品粘在酶解袋内壁高于上压条,否则应用带针头的注射器吸取缓冲液将样品冲入酶解袋,冲洗体积不超过两毫升)。
- 3.3.3、仪器自动进行酶解、乙酸溶液添加。然后根 据弹窗提示测定(或需添加 1mo1/L 氢氧化钠溶液或 2 -

^{*}本报告仅供委托方进行科研、产品研发之目的使用,与本报告有关的监测数据、结果不具有向委托方之外的任何主体、社会公众的证明、验证作用。

乙酸溶液调整)空白、样品的 pH 值为 4.3 ± 0.2 ,然后向需测定不可沉降性膳食纤维(SDFS)的样品中准确加入 2mL 的 100mg/mL 的二甘醇内标液。

3. 3. 4、仪器自动进行 95%乙醇添加、计时沉淀、抽滤和残渣洗涤。若抽滤结束后,内斗中仍存有滤液,则需在调试界面手动开启抽滤,将滤液全部收集至抽滤瓶中。程序结束后,得到滤液与 TDF 的残渣,将附有残渣的滤纸取出,按照十字折叠后放置于样品架上,在 105 C 烘箱中烘干至恒重(至少需 4 小时)并称重为 M_{GR} 。

3.4、每两份残渣中,一份按照国标《GB 5009.5-2016 食品安全国家标准 食品中蛋白质的测定》第一法进行消解(推荐试剂量为硫酸铜 0.2g、硫酸钾 3g、硫酸 20mL,420℃下保温时间至少为 3 小时),蒸馏、滴定,计算蛋白质质量 M。;另一份置于马弗炉中,于 550℃下灰化 3h 测定灰分,计算灰分质量 M。。

3.5、用量筒移取 200mL 滤液至烧瓶中,设定旋转蒸发仪的参数为 50° C~80° C,转速为 100rpm,然后将盛有滤液的烧瓶安装到旋转蒸发仪对应位置处,将滤液旋蒸至近干。

3.6、用 20mL 纯水将近干溶液复溶。充分溶解后,取 5mL 溶液至离心管中,离心管中提前分别加入 2g 的 阴离子交换树脂 (0H⁻) 和氢离子交换树脂 (H⁻),然后反复颠倒混合至少 5 分钟进行脱盐,然后静置 10 分钟后将上清液转移至新的离心管中。再向有离子交换树脂的离心管中加入 5mL 纯水,重复颠倒混合和静置的过程,然后将上清液合并至新的离心管中。

3.7、将脱盐后的溶液过 0.45 μm 水相膜后,上液相色谱仪检测,按照参考国标设置液相色谱仪的参数。

3.8、HMWDF 计算

试剂空白按下公式计算:

$$M_B = \overline{M_{BR}} - M_{BP} - M_{BA}$$

M_s: 试剂空白质量, g;

 $\overline{M_{BR}}$: 试剂空白残渣质量, g;

M_{RP}: 试剂空白残渣中蛋白质质量, g;

M_{RA}: 试剂空白残渣中灰分质量, g。

HMWDF 按下公式计算,书写相同的参数应对应好相应的测试指标:

$$X_{HMWDF} = \frac{\overline{(M_{GR} - M_G)} - M_P - M_A - M_B}{\overline{M} \times f} \times 100\%$$

$$f = \frac{M_C}{M_D}$$

- M_{GR}: 试样残渣及处理后滤膜质量, g;
- M_g: 处理后滤膜质量, g;
- X: 试样中膳食纤维含量, %;
- M₂: 试样残渣中蛋白质质量, g;
- M_A: 试样残渣中灰分质量, g;
- M_B: 试剂空白质量, g;
- M: 试样取样量, g;
- f: 试样因脱水、脱糖、脱脂导致质量变化的校正因子,若样品经多次处理,则将每个校正因子相乘,得到总的校正因子;若试样无需处理,则为1;
 - M_c: 试样预处理前质量, g;
 - M_D: 试样预处理后质量, g;
- 3.9、SDFS 计算

$$X_{SDFS} = \frac{PA_{SDFS} \times m_{IS}}{PA_{IS} \times m \times Rf \times f} \times \frac{100}{1000}$$

PAsprs: 试样上机液中待测物质的峰面积, RIU • s;

m_{is}: 滤液中加入的内标物的质量, mg;

PA_{Is}: 试样上机液中内标物的峰面积, RIU • s;

- m: 试样的称样量, g;
- Rf: 标准物质与内标物质的响应因子,经测试,响应因子 Rf=1.3481;
- f: 同 3.8 中 f;

100: 转换为百分比含量的系数;

1000: mg 转换为 g 的系数。

四、结果与讨论

经过分析检测,3中抗性麦芽糊精样品中的HMWDF含量如下表:

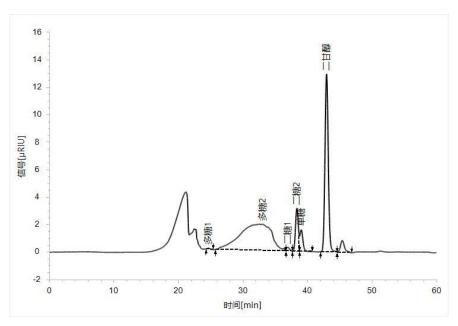
————样品	称样量/g	残渣/g	残渣蛋白/g	残渣灰分/%	HMWDF/%	均值/%	精密度/%
抗性麦芽糊精 1	0. 2542	0.0122	0.0010		2. 614	2. 696	6. 02
	0. 2554	0.0113		0.0032	2.014		
	0. 2538	0.0112	0.0012		2.777		
	0. 2509	0.0134		0.0032	2.111		
	0.0000	0.0033	0.0006				
	0.0000	0.0039		0.0021			
抗性麦芽糊精 2	0. 2557	0.0070	0.0006		0.390	0. 377	7. 00
	0. 2528	0.0061		0.0027	0. 590		
	0. 2542	0.0081	0.0009		0.264		
	0. 2533	0.0057		0.0028	0.364		
	0.0000	0.0051	0.0006				
	0.0000	0.0048		0.0021	1		
抗性麦芽糊精 3	0. 2505	0.0096	0. 0007		1 070	2. 080	9. 76
	0. 2536	0.0096		0. 0019	1.978		
	0.2518	0.0103	0. 0013		0 101		
	0. 2549	0.0116		0.0021	2. 181		
	0.0000	0.0041	0.0005				
	0.0000	0.0051		0.0021			

三种抗性糊精样品中的 SDFS 含量如下表:

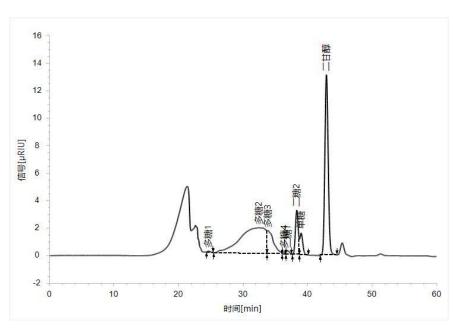
样品	称样量	二甘醇质量	二甘醇峰面积	SDFS 总峰面积	SDFS	均值/%	精密度/%
	/g	/mg	/μRIU•s	/μRIU•s	/%	7月11月/10	相面/文/ //0
抗性	0. 2542		465. 908	667. 175	83. 574	81.685	4. 63
麦芽糊精1	0. 2554		473. 579	650. 553	79. 795	01.000	
抗性	0. 2527	200	481. 321	721. 779	88. 038	84. 700	7.88
麦芽糊精 2	0. 2528	200	442. 065	612. 885	81. 362	04.700	
抗性	0. 2505		465. 222	734. 705	93. 530	90. 529	6. 63
麦芽糊精3	0. 2536		473. 591	708. 588	87. 528	90. 529	

- 6 -

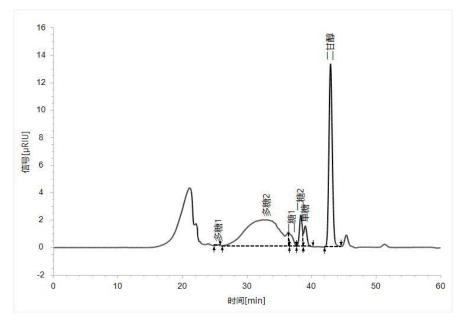
^{*}本报告仅供委托方进行科研、产品研发之目的使用,与本报告有关的监测数据、结果不具有向委托方之外的任何主体、社会公众的证明、验证作用。



三种抗性麦芽糊精中的 TDF 含量计算结果如下表:


样品		湿基		干基			
	HMWDF/%	SDFP/%	TDF/%	HMWDF/%	SDFP/%	TDF/%	
抗性麦芽糊精 1	2. 696	81. 685	84. 381	2. 840	86. 057	88. 897	
抗性麦芽糊精 2	0.337	84. 700	85. 037	0. 348	87. 581	87. 930	
抗性麦芽糊精 3	2.080	90. 529	92. 609	2. 151	93. 638	95. 789	

其中,经快速水分测定仪测试,抗性麦芽糊精 1 的水分含量为 5.08%,抗性麦芽糊精 2 的水分含量为 3.39%,抗性麦芽糊精 3 的水分含量为 3.32%。三种抗性麦芽糊精的 HMWDF 与 SDFS 测定结果的精密度均符合参考国标[1]的要求,即精密度不超过 20%。


三种样品的液相谱图如下(每种样品平行选取 1 个谱图, SDFS 的保留时间为 23.8min~36.2min, 多糖的峰即为样品中 SDFS 的保留峰):

样品1的SDFS保留时间与待测物峰形

样品 2 的 SDFS 保留时间与待测物峰形

样品 3 的 SDFS 保留时间与待测物峰形

五、参考

[1] GB 5009.88-2023 食品安全国家标准 食品中膳食纤维的测定[s]