

电位滴定法测定三氯化铝含量

一、前言

氯化铝, 化学式为 AlCl₃, 是氯和铝的化合物。氯化铝熔点、沸点都很低,且会升华,为有离子性的 共价化合物。可溶于水和许多有机溶剂,水溶液呈酸性。根据 GB/T3959-2008 工业无水氯化铝中含量测定,使用 T960 全自动电位滴定仪验证该方法的可行性,找到了检测其含量最快速最方便的检测方法。

二、仪器与试剂

2.1、仪器

T960 全自动电位滴定仪,复合银离子电极,<mark>容量瓶,漏斗,</mark>分析天平等

2.2、试剂

无水乙醇, 200g/L 氢氧化钠溶液, 0.1mol/L 硝酸银标准滴定液, 去离子水, 0.1%溴酚蓝指示剂

三、实验方法

3.1、实验过程

称取 2g(精确至 0.0001g)试样,将其置于干燥的带有内盖的试剂瓶中,加入约 80mL 超纯水,迅速盖好内盖,并拧紧试剂瓶外盖,待试样完全溶解,氯化氢气体完全被水吸收,将溶液转移至 500mL 容量瓶,用去离子水润洗 2-3 次试剂瓶,清洗液也转移至容量瓶中,最后用超纯水定容至刻度线,摇匀备用。

用 25mL 移液管移取定容好的试样 25mL,置于滴定杯中,加入 25mL 去离子水,滴加一滴溴酚蓝指示剂,用氢氧化钠溶液调节溶液是黄色,把滴定杯放于滴定台上,插入电极,滴定至电位突跃终点。

3.2、仪器参数

T960 全自动滴定仪参数设置如表 1 所示:

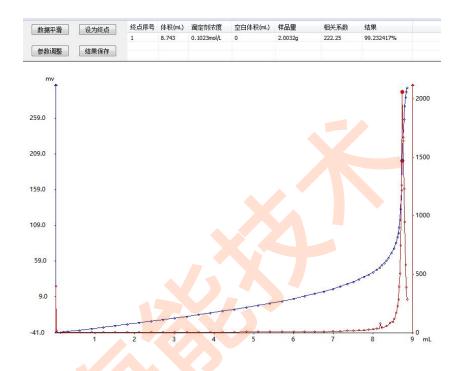
表 1 滴定仪参数设置

滴定类型:	动态滴定	方法名:	三氯化铝含量测定	
滴定管体积:	10mL	样品计量单位:	g	
工作电极:	复合银离子电极	参比电极:	无	
搅拌速度:	7	预搅拌时间:	5s	
电极平衡时间:	4s	电极平衡电位:	1mv	
滴定速度:	标准	滴定前平衡电位:	6mv	
最小添加体积:	0.02mL	结束体积:	20mL	
预滴定添加体积:	0(也可适当设置)	最小添加体积:	0.02mL	
电位突跃量:	500mV	预控 mv 值:	无	
相关系数:	35.5	结果单位:	%	
滴定剂名称:	硝酸银	理论浓度:	0.1	

四、结果与讨论

4.1、实验结果

样品经测试,得到实验结果如表 2 所示:


表 2 氯化铝含量测试结果

样品名称	取样量/g	滴定体积 V ₂ /mL	氯化物(%)	平均值(%)	RSD(%)
三氯化铝	2.0032	9.233	99.302	99.297	0.0631
		8.754	99.357		

	8.743	99.232		
2.1117	9.216	99.226		
	9.208	99.140	99.302	0.212
	9.260	99.540		

4.2、滴定图谱

4.3、结论

本次测试通过自动电位滴定仪测定三氯化铝含量,重复性和再现性均满足要求。而且使用仪器判断减少了人工误差,大大提高了实验的精度。电位滴定法是检测三氯化铝含量的不错选择。

参考文献

[1]GB/T3959-2008 工业无水氯化铝[S].